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1. INTRODUCTION 

NUMEROUS technical problems involve the movement of a 
phase boundary induced by the diffusion of energy or mass. 
Most common examples including the conduction of heat 
are the solidification of casting, the thawing of permafrost, 
the freezing of foods, aerodynamic heating of missiles and 
in many other geophysical problems. Mathematically, these 
problems belong to so-called moving boundary problems in 
which the moving interface divides the relevant field into at 
least two regions. Such problems become nonlinear because 
the location of the moving interface is not known a priori. 
Due to this nonlinearity analytical solutions can be found 
only in limited situations, for example, as in Neumann’s 
solution for a one-dimensional problem. Also, the vast 
majority of theoretical work in this area has been limited to 
the analysis of one-dimensional moving boundary problems. 

To date, several methods are available for the solution of 
two-dimensional moving boundary problems. In most cases, 
the emphasis has been placed on a general class of two- 
dimensional solidification or melting problems, and the fol- 
lowing discussion is thus given in the context of this kind 
of system. Surveys of the early literature with numerous 
references dating from the time of Stefan are given in Crank’s 
[l] comprehensive book ; in Fasano and Primicerio [2] is 
contained an up-to-date account of mathematical devel- 
opments and of wide ranging applications to problems in 
physical and biological sciences, engineering, metallurgy, soil 
mechanics, decision and control theory, etc. The present 
note proposes a relatively simple numerical method for the 
solution of multi-dimensional moving boundary problems 
on extending and modifying Boadway’s (31 transformation. 
The idea in the present scheme is a particular case of the 
curvilinear transformation, that is one in which the depen- 
dent variable is interchanged with one of the space variables. 
The variation of this method, the so-called Isotherm 
Migration Method (IMM) was proposed by Chernousko [4] 
and independently by Dix and Cizek [5] and subsequently 
developed and extended to two space dimensions by Crank 
and co-workers [6-91 and Turland [lo]. The use of coordinate 

transformation for immobilizing the boundary in the case 
of two-dimensional moving boundary problems has been 
reported by some of the authors. For example, Furzeland 
[I l] used body-fitted curvilinear coordinate transformation 
for transforming a curve-shaped region into a fixed rec- 
tangular domain; Saitoh [12] and Duda et al. [13] discussed 
several problems using polar coordinates together with the 
immobilization transformation. More recently, Sparrow and 
Hsu [14] used coordinate transformations for a control vol- 
ume formulation. Finally, in their formulation, Gupta and 
Kumar [15] gave a method based on coordinate trans- 
formation which transformed the time varying domain into 
an invariant one. 

In our approach, we propose a relatively simple numerical 
method for the multi-dimensional moving boundary prob- 
lems by an independent variable interchange. The present 
scheme is an extension of Boadway’s [3] transformation to 
time-dependent moving boundary problems in a two or more 
dimensional case. In our method, not only the shape of the 
moving interface but also that of the fixed boundary can be 
selected arbitrarily, thereby allowing its application to more 
practical situations regardless of the geometry of the problem 
considered. 

2. THE EXTENSION OF BOADWAY’S 
TRANSFORMATION 

For the purpose of illustration, governing equations are 
presented for the two-dimensional case, since the extension 
to three dimensions is accomplished in a similar manner. 
Hence, a particular case of the curvilinear transformation 
for the heat flow equation can be performed for example, 
following Boadway’s [3] treatment of fluid flow problems. 
The equation for heat flow in a homogeneous medium in 
which the heat conductivity k and specific heat c may be 
functions of temperature Li, and density p, can be written as 
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Here temperature U is a function of space coordinates (x.Y) 
at a given time, i.e. 

U = U(X,Y) (2) 

dU = (ZU/&, d.x+(&/ZY) dY. (3) 

Now we introduce a new dummy variable 

$(S,.V) (4) 

and a similar relation for dQ as given in equation (3). What 
is required are new functions 

x = ~(4, U) and Y = ~$4. U) (5) 

for which we have 

and similarly for dy. On using equation (6) together with 
equation (3) and the corresponding expression for d$, we 
obtain 

(7) 

and similarly for dY. Then by collecting the dx terms in the 
two expressions we obtain 

The solution is 

a# _ (:,/au SU -av/a#l 

f3.u 
---- and --=-A- - 

.4 ds A (9) 

where A is the determinant of matrix (8). Similarly collecting 
dY terms we obtain 

from which 

In dealing with second derivatives we obtain 

in which first derivatives are given by equations (9) and 
(1 I). A similar expression can be obtained for a(IGUjr?JY)/d.Y. 
Finally. we wish to interchange temperature U with one 
of the space variables say, p, i.e. to write _r = Y(_x, U) and 
reference to the second term of equation (5) shows that we 
must now let # = x in the above analysis. When this is 
done in the development of equation (12) and the cor- 
responding expression for a(KaU/JY)/ay, noting that deter- 
minants A of matrices (8) and (10) are reduced to aY/aU, 
and also that 

(f3) 

the heat equation (I) can be written as 

where for convenience k denotes K(aY/i?U). If K. c are 
constants equation (14) reduces to 

Equation (15) represents Y as a function of U. x and 1. 
Turland [lo] derived equation (15) on obtaining the complete 
transformation by using a slightly different argument rel- 
evant to the present problem. Finally, similar ideas can be 
extended to derive the three space dimensional heat con- 
duction equation by introducing the dummy variables 
Cp = 4(x, Y) and r = T(x,~) instead of only 4 = 4(x. Y) as in 
the two space dimensional case. Thus, following the same 
procedure the three-dimensional form of heat conduction 
equation (I), i.e. 

can be written finally as 

Z?;= {(??+;?$!-J 

An iterative finite difference solution of the steady-state form 
of this equation in the model of the three-dimensional free 
boundary problem is also soived in ref. [16]. 

3. TWO-DiMENSIONAL PROBLEM AND THE 
TRANSFORMATION 

As an example of the application of the above-mentioned 
transformation to a two-dimensional moving boundary 
problem, we consider the following. An infinitely long square 
prism - 1 < x < 1 and - I < Y < t , is initially filled with 
fluid at a fusion tem~rature, say of unity. The temperature 
on its surface is kept constant at zero which is below the 
fusion temperature to ensure that the solidification surface 
moves inwards, 

Because of symmetries about the axes and the diagonal 
J‘ = X, it is sufficient to work in the triangular region R, 
defined by R = {.x.y(y < .x $ 1, 0 G ,V < 1 f Moreover. it 
would also be more appropriate to work in the cylindrical 
polar coordinate system, to make use of a suitable choice of 
coordinate system for the problem considered above with 
existing symmetries. Hence, in cylindrical polar coordinates 
it can be written as R = (r.010 < I < C(B), 0 < 0 < n/4), 
where C(0) is the boundary of the prism. Therefore, we 
mathematically require a solution of the equation 

U, = U,, i Cl, :r + C:,i,,;r’ inn (17) 

where Q is the domain bounded by r = I/cos 0, on which 
U = 0 and by the moving interface defined by r = S(B. I) on 
which U = 1. for 0 < 0 < a/4, t > 0. 

Also, due to various symmetries, the additional conditions 
to be satisfied are 

C;, = 0 at 0 = 0 and x/4. (18) 

In addition to the interface condition given above, the mov- 
ing boundary must satisfy the second condition which is 
known as the latent heat condition. Since, in the example, 
the liquid phase is always at the uniform temperature U = 1 
and there is no temperature gradient in the liquid phase, the 
latent heat condition can be written in more appropriate 
form, namely 
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$?v, 
where n is the outward normal to the interface; V,, the 
velocity of the interface in the direction of n and B a constant 
depending on the thermal properties of the material under- 
going the phase change. But, now, the interface latent heat 
condition (19) is not in the form suitable for development of 
analytical or numerical solution of the phase change prob- 
lems of this kind. Therefore, following Ozisik [ 171 and in the 
light of the transformation given in Section 2, we can write 
equation (I 9) in a more convenient form as 

Further, we now interchange U and r so that r = r(U, 0, t) 
becomes the new dependent variable instead of U. With 
suitable changes of nomenclature, and using the techniques 
described earlier equation (I 7) results in the following differ- 
ential equation : 

dr -‘_! 2 dr & t3’r 

0 I r2 dUd0 &%U au r (21) 

As easily seen, equation (20) now replaces equation (21) 
which is valid at all other points of the region. Thus, we solve 
the test problem numerically using equation (21) with the 
moving boundary condition (20) as well as the consistent 
transformed boundary conditions in the transformed 
domain in (U, 8, t)-space. 

4. DlSCRETlZATlON OF TRANSFORMED 
EQUATIONS 

As usual, we work on the U-0 grid by choosing 6U and 
60suchthatU,=U,,+i~U,i*O,1,2 ,..., N(U,=Oand 
U,=l) and 0,=0,+$0, j=O,1,2 ,..., M (8,=0 and 
0, = n/4). We evaluate the values of r on this grid at suc- 
cessive time steps r, = f0+n*6t where I, is the time when 
numerical computations are commenced and 61 is the time 
interval. Wealso point out that U,+k*SUis the kthisotherm 
on which the temperature is U, in the (r, Q-plane. Therefore, 
we calculate the values of r in equation (21) by the usual 
finite difference and obtain an explicit expression for r;’ ‘, 
thevalueratU=U,+i*GU,0=0,+jMandt,+,interms 
of values already available at (U,+iGU, O,+_jcW, t,). Now 
let Ar:, denote the displacement of the isotherm U, along 0, 
in the time interval t, i.e. 

Y+’ = rL+Ar:j ‘4 

where from equation (21), r;, is 

i= I,2 ,.._, N-l,j=O,l,_.., M. (22) 

In a similar manner, the finite-difference form of condition 
(20) is 

(23) 

In addition as the isotherm U = U. always coincides with 
the fixed surface of the prism, the condition on the surface 
is Ar” 0,, = 0. Thus, if initial data are given of the coordinates 
of a number of points along each set of isotherms, we can 
use the approach described here to advance the isotherms at 
successive time intervals 61. 

5. NUMERICAL RESULTS 

As our method is not self starting, one has to commence 
the computation after adopting the initial position of the 
isotherms from some other sources. However, to generate an 
initial set of isotherms an analytic or some alternative solu- 
tion is needed to provide the temperature distribution at 
some small time t,. Sometimes, a few steps can be calculated 
by using a finite-difference form of the original equation on 
the r, 0 grid, then r values obtained by suitable interpolation 
can be transferred to the CJ, 0 grid and the original method 
of solution proceeds. In the present case, in order to assess 
the accuracy of the results obtained from the present method, 
we also make a start, like Crank and Gupta [7] by taking 
the initial values of the temperature and interface positions 
from the one parameter integral method of Poots [18] at 
t = 0.0461. 

We have selected 6U = 0.1 and 60 = n/40 and taken time 
steps to be t = 0.0001 to keep the scheme stable. Table 1 
along with the comparative figures from Crank and Gupta 
[7], Crank and Crowley [8] and Gupta and Kumar [15]. In 
all four methods, the values corresponding to the distance 
of the interface on the axis agree well from beginning to end. 
On the other hand, as far as the figures corresponding to 
the distance along the diagonal are concerned. the results 
obtained from the present method agree better than those of 
Gupta and Kumar [15]. Also, the results tend to agree with 
those of Crank and Crowley [8] as time goes by. 

The complete solidification of the prism is obtained as 
0.6187 where the corresponding value from Gupta and 
Kumar [15] is 0.6302, but values from Crank and Gupta and 
Crank and Crowley are not available for comparison, since 
the methods cannot be perused until complete solidification. 

It is worth pointing out that to reduce the number of 
calculations after some time, the displacement of the circular 
isotherms can be calcuhrted at the points on the axis only. 
Because, as the isotherm is expected to assume a circular 
shape gradually near the end of the process, we keep com- 
puting the differences between the distances of the interface 
along the axis and along the diagonal for each isotherm. As 
soon as it becomes negligible within the desired accuracy, 
we can fix the centre of the isotherm at the origin. The 
displacement of the circular isotherm need not be calculated 
for all values of 0 except the axis. 

6. CONCLUDING REMARKS 

A numerical method for a general multi-dimensional mov- 
ing boundary problem has been presented. The method pro- 
posed in this paper has been illustrated by examining the 
solidification of a square prism of fluid, however, it is reason- 
able to expect that the principles can be applied to a wide 
variety of systems of different geometries and characteristics. 

On the other hand, the method can offer appreciable 
advantages for problems involving variable heat parameters, 
particularly when they are temperature dependent. The par- 
ameters need not be evaluated for the different set of tem- 
peratures calculated at each time step at the point of a r-0 
grid as in the traditional finite-difference solution of equation 
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Table 1. Comparison of the x-coordinate of the solid-liquid interface on the 
x-axis and the diagonal 

Crank and 
Time, t Gupta [7] 

0.05 0.8125 
0.10 0.6979 
0.15 0.6157 
0.20 0.5473 
0.25 0.4865 
0.30 0.4302 
0.35 0.3766 
0.40 0.3337 
0.45 0.2816 
0.50 
0.55 
0.60 

0.05 0.6483 
0.10 0.5812 
0.15 0.5103 
0.20 0.4428 
0.25 0.3948 
0.30 0.3351 
0.35 0.2831 
0.40 0.2332 
0.45 0.1947 
0.50 
0.55 
0.60 

Present 
Crank and Gupta and 6(/ = 0.1, 60 = n/40 

Crowley [8] Kumar [I51 6t = 0.0001 

On the x-axis 
0.775 0.8125 
0.676 0.6982 
0.601 0.6156 
0.536 0.5463 
0.477 0.4837 
0.420 0.4244 
0.364 0.3663 
0.308 0.3078 
0.249 0.2495 
0.188 0.1894 
0.119 0.1271 

0.0562 

On the diagonal 
0.732 
0.619 
0.536 
0.463 
0.399 
0.342 
0.282 
0.237 
0.188 
0.139 
0.087 

0.6476 
0.5642 
0.4935 
0.4264 
0.3642 
0.3130 
0.2590 
0.2176 
0.1764 
0.1339 
0.0899 
0.0398 

(17). Instead the parameters are evaluated once and for all for transient heat conduction analysis, Proc. 4th Znt. 
before the method starts and only for the constant U lines Heat Transfer Conj, Paris, Vol. 1. ASME, New York 
of the U-0 grid. (1970). 

Moreover, the decision as to whether the transformation 
should be applied to r or fI (x or y in the Cartesian case) may 
be influenced by the nature of the boundary conditions and 
it is naturally problem dependent. 

6. 

However, as a small drawback, the temperature U should 
be a single-valued function of the independent variables 
initially and at any subsequent time. The temperature at 
any point can only have one value at a given time. Where 
symmetry does not exist or where use of it might introduce 
some fresh difficulties this may be overcome by suitable 
choice of the coordinate system or the choice of an indepen- 
dent variable or other convenient means. But, such methods, 
for the time being, lie outside the scope of this paper. 

Finally, the extension of the numerical method is appar- 
ently feasible for resolution of three-dimensional problems 
and problems with more complicated situations. Never- 
theless, this will be left to a later date. 
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INTRODUCTION 

NATURAL convection heat transfer from flat plates is a prob- 
lem which is of interest in a variety of industrial applications. 
As a result, these flows have been the subject of numerous 
theoretical and experimental studies. In addition to the limit- 
ing cases of flow adjacent to vertical and horizontal surfaces, 
the intermediate case of inclined plate heat transfer has also 
been examined by a number of investigators. 

Theoretical predictions of laminar heat transfer cor- 
relations can be obtained from similarity solutions for ver- 
tical plates as described by Sparrow and Gregg [l] and Yang 
[2], who followed the classic work by Ostrach [3]. Extension 
of similarity solutions to inclined surfaces has been dis- 
cussed by Chen and Yuh [4]. Similarity solutions for a con- 
stant flux surface predict a correlation of the form 

Nu, = C(Gr,*) “’ (1) 

where the local Nusselt number and the modified local 
Grashof number are defined by 

NM, = F and Gr: = Gr, Nu, = “-s. (2) 

A theoretical prediction for heat transfer to room tem- 
perature water can be obtained from the similarity solution 
for a Prandtl number of 6.14 (corresponding to water at 
25°C). In terms of Ra:, the modified Rayleigh number, the 
predicted relation can be shown [5] to be 

Nu, = 0.587(Ra:) “‘. (3) 

Experimental studies of heat transfer adjacent to inclined 
surfaces began with work conducted with isothermal 
surfaces. Rich [6] was the first to show that heat transfer 
coefficients could be correlated for inclined surfaces by using 
only the component of gravity parallel to the surface in the 
Grashof number (g cos 6 instead of g where 0 is the angle 
from vertical). Rich’s result, which was obtained for an iso- 
thermal surface inclined at up to 40” from vertical has been 
supported by numerous subsequent investigators working 
with both isothermal surfaces (e.g. refs. [7, 81) and with 
uniform heat flux surfaces (e.g. refs. [9, lo]). 

Available correlations for uniform heat flux inclined sur- 
faces stem primarily from the studies by Vliet [9]. Vliet 
arrived at a correlation of 

Nu, = 0.60(Gr,* cos 0 Pr)0.20 (4) 

using a heated foil and both water and air as working fluids. 
Vliet made measurements of temperature differences as small 
as 3°F (1.7”C) and estimated his measurement error for the 

t Present address : Shell Development Co., Westhollow 
Research Center, P.O. Box 1380, Houston, TX 77251-1380, 
U.S.A. 

Nusselt number at 5% for high heat fluxes and 15% for low 
heat fluxes. The lowest Rayleigh numbers measured were in 
the neighborhood of Ra,* = 6x 106. The highest heat flux 
measurements extended to Ra: = 2 x 10” ; well into the tur- 
bulent flow region. Inclinations measured ranged from ver- 
tical to 60” from vertical. Another set of data for inclined 
surfaces was obtained using a heated foil in air [lo], and 
resulted in a correlation of 

Nu, = 0.55(Gr,* cos 0 Pr)’ “. (5) 

In this instance, measurements for upward facing plates were 
made only for 30” from vertical and for vertical. The laminar 
data extended down to modified Rayleigh numbers as low 
as 5 x 108. Since the experiments were conducted in air, cor- 
rections were required for radiative and conductive losses of 
heat. These corrections amounted to 18-23% of the heat 
dissipated. Deviation of the Nusselt numbers from the rec- 
ommended correlation appears to be in the range of l&20% 
for the upward facing inclined data. 

Here, we describe measurements of laminar inclined sur- 
face heat transfer data which were obtained over a wider 
range of experimental conditions and with more precision 
than has been previously reported. The experimental scatter 
of Nusselt numbers measured by the techniques presented in 
this investigation was typically less than l-2%. The results 
described are an offshoot of a set of studies which were 
directed toward an improved understanding of atmospheric 
mountain slope flows [5]. 

With measurements of greater precision, the accuracy and 
range of applicability of the similarity solutions can be more 
adequately assessed. In particular, the validity of applying 
the vertical plate correlations to near-horizontal inclinations 
by a cos 8 Ra: correction is addressed. In addition, the low 
Rayleigh number behavior of the heat transfer coefficient is 
described. Isothermal data reported in ref. [l l] indicate that 
there is a lower limit to the linear region of heat transfer 
correlations associated with a change of regime from con- 
vection heat transfer to conduction. Such measurements for 
uniform flux surfaces require a high degree of precision in 
determining the surface to bulk temperature difference. As 
Holman [ 1 I] pointed out, experimental scatter of + 20% is 
typical for these types of experiments which has made it 
difficult to address these problems in previous investigations. 

EXPERIMENTAL DESIGN 

In this section we begin by briefly describing the equipment 
used for these experiments. Drawings and more extensive 
details of the construction are available elsewhere [5] and 
are not included here. The heated surface used for these 
experiments was 0.3048 m long and 0.1524 m wide and con- 
sisted of a 0.0254 mm stainless steel foil backed by 0.0191 m 
thick extruded polystyrene insulation and a 0.0127 m acrylic 
plate. The heated foil (made up from stainless steel #304 


